
8 – Loops and Arrays in Processing

Francesco Leotta, Andrea Marrella

Last update : 19/4/2018

Corso di Laurea Magistrale in Design, Comunicazione

Visiva e Multimediale - Sapienza Università di Roma

Interaction Design
A.A. 2017/2018

What is iteration?

2 Interaction Design 17/18 8 – Loops and Arrays

 Iteration is the process of repeating a set of steps over and over again.

 Suppose we want to draw 3 lines starting from x coor = 50 pixels with one line every 10 pixels.

void setup() {

size(200,200);

background(255);

}

void draw() {

stroke(0);

int y = 80; // Vertical location of each line

int x = 50; // Initial horizontal location for first line

int spacing = 10; // How far apart is each line

int len = 20; // Length of each line

line(x,y,x,y+len);

x = x + spacing;

line(x,y,x,y+len);

x = x + spacing;

line(x,y,x,y+len);

x = x + spacing;

}

Draw the first line.

Add spacing so the next line

appears 10 pixels to the right.

Continue this process for each line, repeating it over and over.

But what happens if we have to draw 100 lines?

What is iteration?

3 Interaction Design 17/18 8 – Loops and Arrays

 Instead of repeating the same command over and over, we want to say something

like: draw one line one hundred times. This dilemma it is easily solved with a control

structure called the loop.

 A loop structure will ask a yes or no question to determine how many times a block

of code should be repeated. This is known as iteration.

 There are two main types of loops, the while loop and the for loop.

 A while loop employs a boolean test condition. If the test evaluates to true, the instructions

enclosed in curly brackets are executed; if it is false, we continue on to the next line of code.

while (boolean test condition) {

// The instructions inside the while block continue to be executed

// over and over again until the test condition becomes false.

}

The while loop

4 Interaction Design 17/18 8 – Loops and Arrays

void setup() {

size(200,200);

background(255);

}

void draw() {

int y = 80;

int x = 50;

int spacing = 10;

int len = 20;

int endLines = 150;

stroke(0);

while (x <= endLines) {

line (x,y,x,y + len);

x = x + spacing;

}

}

Initial condition for the loop.

Exit condition for the loop: a variable

to mark where the lines end.

Draw each line inside a while loop.

The loop continues while the boolean

expression is true. Hence, the loop stops

when the boolean expression is false.

We increment x each time of a value equal to
spacing through the loop, drawing line after line

until x is no longer less than endLines.

The while loop

5 Interaction Design 17/18 8 – Loops and Arrays

void setup() {

size(200,200);

background(255);

}

void draw() {

int y = 80;

int x = 50;

int spacing = 5;

int len = 20;

int endLines = 150;

stroke(0);

while (x <= endLines) {

line (x,y,x,y + len);

x = x + spacing;

}

}

A smaller spacing value results in

more lines that are closer together.

Exercise 1 - Concentric Circles

6 Interaction Design 17/18 8 – Loops and Arrays

 Complete the following code to recreate the below screenshot:

float x = 100;

float y = 100;

float w = 200;

float h = 200;

void setup() {

size(200,200);

background(255);

}

void draw() {

while (________) {

stroke(0);

fill(______);

ellipse(___,___,___,____);

__ = __-20;

__ = __-20;

}

}

Solution of Exercise 1

7 Interaction Design 17/18 8 – Loops and Arrays

float x = 100;

float y = 100;

float w = 200;

float h = 200;

void setup() {

size(200,200);

background(255);

}

void draw() {

while (w>=0) {

stroke(0);

fill(w);

ellipse(x,y,w,h);

w = w-20;

h = h-20;

}

}

Exit conditions

8 Interaction Design 17/18 8 – Loops and Arrays

 When we use a loop, we must make sure that the exit condition for the

loop will eventually be met!

int x = 0;

while (x < 10) {

println(x);

x = x – 1;

}

Processing will not give you an error

should your exit condition never occur.

Example of infinite loop! This program

never ends! Don’t do this!

Exercise 2 – Multiple Lines

9 Interaction Design 17/18 8 – Loops and Arrays

 Write the Processing code to recreate the below screenshot:

Solution of Exercise 2

10 Interaction Design 17/18 8 – Loops and Arrays

float x1 = 0;

float x2 = 200;

float y = 10;

void setup() {

size(200,200);

background(255);

}

void draw() {

while (y<=height) {

stroke(0);

line(x1,y,x2,y);

y = y+10;

}

The for loop

11 Interaction Design 17/18 8 – Loops and Arrays

 A useful shortcut of while loop, to be used where one value is incremented

repeatedly, is the for loop.

for(initialization; boolean test; iteration expression) {

// The instructions inside the for block continue to be executed

over and over again until the test condition becomes false.

}

Initialization: a variable is declared

and initialized for use within the body

of the loop. It often acts as a counter.

Boolean test: any

Boolean expression

that evaluates to

true or false

Iteration expression: instruction

that happens at the end of any

loop cycle. It usually increments

the variable used as a counter

A for loop can have its own

local variable just for the

purpose of counting.

The for loop

12 Interaction Design 17/18 8 – Loops and Arrays

 To the machine, it means the following:

 Declare a variable i.

 Set its initial value to 100.

 While i is greater or equal than 0, repeat the internal code of the loop.

 At the end of each iteration, decrement i of 5.

Exercise 3

13 Interaction Design 17/18 8 – Loops and Arrays

 Complete the following code to recreate the below screenshot:

float x1 = 0;

float x2 = 200;

void setup() {

size(200,200);

background(255);

}

void draw() {

for (________;_________;________) {

stroke(0);

line(x1,_____,x2,_____);

}

}

Solution of Exercise 3

14 Interaction Design 17/18 8 – Loops and Arrays

float x1 = 0;

float x2 = 200;

void setup() {

size(200,200);

background(255);

}

void draw() {

for (int y = 10; y < height; y = y+10) {

stroke(0);

line(x1,y,x2,y);

}

}

Exercise 4 – Drawing Eggs

15 Interaction Design 17/18 8 – Loops and Arrays

 Write a program to draw eggs in sequence using the for construct,

by representing the following behavior:

 When the left mouse is clicked, add one egg to the sequence.

 When the right mouse is clicked, add two eggs to the sequence.

left click right click

Solution of Exercise 4

16 Interaction Design 17/18 8 – Loops and Arrays

// a variable to record the x coordinate value of any ellipse

int x;

// a variable to keep the number of eggs

int bowl;

void setup() {

size(640, 360);

background(199);

fill(255);

x = 10; // initialize the variable x

bowl = 0; // initialize the variable bowl

}

void draw() {}

…continue…

Solution of Exercise 4

17 Interaction Design 17/18 8 – Loops and Arrays

void mouseClicked() {

// when the mouse is clicked, increase of one the number

// in the variable bowl

if(mouseButton == 37) {

bowl = 1;

}

else if (mouseButton == 39) {

bowl = 2;

}

// Draw as many eggs as those in the variable bowl

for (int i = 0; i < bowl; i++) {

ellipse(x, 250, 55, 77);

x += 70;

}

}

Local VS Global Variables

18 Interaction Design 17/18 8 – Loops and Arrays

 Until now, any time that we have used a variable, we have declared it at the
top of our program above setup().

 Such variables are called global variables.

 They can be used in any line of code anywhere in the program.

 Local variables are declared within a block of code (for example, in the
definition of a function like setup() or draw(), or in a if statements,

while and for loops.

 A local variable declared within a block of code is only available for use inside

that specific block of code where it was declared.

int x = 0;

void setup() {

int y = 20;

int z = x + y;

}

Example of a global variable. It can

be always used!

Example of local variables. They can be
used only within the setup()block of

code.

Exercise 5

19 Interaction Design 17/18 8 – Loops and Arrays

 Predict the results of the

following two programs

after 100 frames.

Exercise 6 – Coloured Grid

20 Interaction Design 17/18 8 – Loops and Arrays

 Create a grid of squares (each colored randomly) using a for loop

inside the draw() function. Once designed, the colors should never

change.

Solution of Exercise 6 (one row per frame)

21 Interaction Design 17/18 8 – Loops and Arrays

int y = 0;

int w = 10;

int h = 10;

void setup() {

size(640,640);

}

void draw(){

float r = 0;

float g = 0;

float b = 0;

for(int x=0;x<width;x=x+10) {

r = random(0,255);

g = random(0,255);

b = random(0,255);

fill(r,g,b);

rect(x,y,w,h);

}

y+=10;

y = constrain(y,0,height);

}

Solution of Exercise 6 (all rows together)

22 Interaction Design 17/18 8 – Loops and Arrays

boolean finished = false;

int w = 10;

int h = 10;

void setup() {

size(640,640);

}

void draw() {

float r = 0;

float g = 0;

float b = 0;

if(!finished) {

for(int y=0;y<height;y=y+10) {

for(int x=0;x<width;x=x+10) {

r = random(0,255);

g = random(0,255);

b = random(0,255);

fill(r,g,b);

rect(x,y,w,h);

}

}

finished=true;

}

}

Exercise 7 – Bouncing Alien with arms

23 Interaction Design 17/18 8 – Loops and Arrays

 Redesign the bouncing alien in order to add a series of line to its

body, resembling arms, like in the figure.

Solution of Exercise 7

24 Interaction Design 17/18 8 – Loops and Arrays

int x = 100;

int y = 100;

int w = 60;

int h = 60;

int eyeSize = 16;

int speed = 1;

void setup() {

size(200,200);

smooth();

}

void draw() {

// Change the x location of the alien by speed

x = x + speed;

…continue…

Solution of Exercise 7

25 Interaction Design 17/18 8 – Loops and Arrays

// If we reach an edge, reverse speed (i.e. multiply it by –1)

//(Note if speed is a + number, square moves to the right,– to

the left)

if ((x > width)||(x < 0)) {

speed = speed * –1;

}

background(255);

// Set rects to CENTER mode

rectMode(CENTER);

// Draw alien's arms with a for loop

for (int i = y + 5; i < y + h; i += 10) {

stroke(0);

line(x–w/3,i,x + w/3,i);

} …continue…

Solution of Exercise 7

26 Interaction Design 17/18 8 – Loops and Arrays

// Draw alien's body

stroke(0);

fill(175);

rect(x,y,w/6,h*2);

// Draw alien's head

fill(255);

ellipse(x,y–h/2,w,h);

// Draw alien's eyes

fill(0);

ellipse(x–w/3,y–h/2,eyeSize,eyeSize*2);

ellipse(x + w/3,y–h/2,eyeSize,eyeSize*2);

// Draw alien's legs

stroke(0);

line(x–w/12,y + h,x–w/4,y + h + 10);

line(x + w/12,y + h,x + w/4,y + h + 10);

}

Arrays

27 Interaction Design 17/18 8 – Loops and Arrays

 Any time a program requires multiple instances of similar data, it might be

time to use an array.

 We can think to an array as a list of variables.

 A list is useful for two important reasons:

1. The list keeps track of the elements in the list themselves.

2. The list keeps track of the order of those elements (which element is the first in the list,

the second, the third, etc.). This is a crucial point since in many programs, the order of

information is just as important as the information itself.

Recall that a variable is a named pointer to

a location in memory where data is stored.

An array, instead of pointing to one

singular piece of information, points

to multiple pieces.

Declaration of arrays

28 Interaction Design 17/18 8 – Loops and Arrays

 In an array, each element of the list has a unique index, an integer value

that designates its position in the list (element #1, element #2, etc.).

 The declaration statement of an array must have a name and a data type.

In addition, we denote the use of an array by placing empty square

brackets “[]” after the type declaration.

Example of an array of 10 elements.

We start at zero because technically

the first element of the array is located

at distance of zero from the beginning.

Array of primitive values (integers).
The array named arrayOfInts will

store a list of integers.

Creation of arrays

29 Interaction Design 17/18 8 – Loops and Arrays

 One fundamental property of arrays is that they are of fixed size.

 The size of an array specifies how many elements we want the array to hold.

 We define the size of an array during the creation stage.

 Once we define the size for an array, its size can never change.

 A list of 42 integers can never go to 43.

To create an array, we use the
new operator, followed by the

data type, followed by the size of

the array enclosed in brackets.

We are defining an array that can

contain 42 integer values!

Example of array declaration and creation

30 Interaction Design 17/18 8 – Loops and Arrays

// A list of 10 integers numbers

int[] numbers = new int[10];

// A list of 4 floating numbers

float[] scores = new float[4];

// Using a variable to specify size

// A list of 5 integers numbers

int num = 5;

int[] numbers = new int[num];

// A list of 5 float numbers

int num = 5;

float[] scores = new float[num];

Initializing an array

31 Interaction Design 17/18 8 – Loops and Arrays

 One way to fill an array is to store the values in each spot of the array.

 The initialization happens with the name of the array, followed by the index
value enclosed in brackets. arrayName[INDEX]

int[] stuff = new int[3];

// The first element of the array equals 8

stuff [0] = 8;

// The second element of the array equals 3

stuff [1] = 3;

// The third element of the array equals 1

stuff [2] = 1;

 A second option for initializing an array is to manually type out a list of

values enclosed in curly braces and separated by commas.

int[] arrayOfInts = {1, 5, 8, 9, 4, 5};

float[] floatArray = {1.2, 3.5, 2.0, 3.4123, 9.9};

Initializing huge arrays

32 Interaction Design 17/18 8 – Loops and Arrays

 To initialize big arrays, it is possible to iterate through its elements.

 Using a while loop to initialize all elements of an array

float[] values = new float[1000];

int n = 0;

while (n < 1000) {

values[n] = random(0,10);

n = n + 1;

}

 Using a for loop to initialize all elements of an array

float[] values = new float[1000];

for (int n = 0; n < 1000; n++) {

values[n] = random(0,10);

}

Assign to any element of the array a

random value ranging from 0 to 10.

Alternatively, we can use the

length property.

for (int n = 0; n <

values.length; n++) {

Exercise 8

33 Interaction Design 17/18 8 – Loops and Arrays

 Given the following array: int[] nums = {5,4,2,7,6,8,5,2,8,14};

Exercise 9 – The Snake

34 Interaction Design 17/18 8 – Loops and Arrays

 We want to program a trail following the mouse.

 The solution requires two arrays, one to store the history of horizontal mouse

locations, and one for vertical.

 Let’s say, arbitrarily, that we want to store the last 50 mouse locations.

 First, we declare the two arrays.

int num = 50;

int[] xpos = new int[num];

int[] ypos = new int[num];

 Second, in setup(), we initialize the arrays. Since at the beginning there

has not been any mouse movement, we fill the arrays with 0.

void setup() {

size(640,480);

for (int i = 0; i<xpos.length; i++) {

xpos[i] = 0;

ypos[i] = 0;

}

}

Exercise 9 – The Snake

35 Interaction Design 17/18 8 – Loops and Arrays

 Each time through the main draw() loop, we want to

update the array with the current mouse location.

 Let’s choose to put the current mouse location in the last spot

of the array.

 The length of the array is 50, meaning index values range from 0–49.

The the last spot is index 49, or the length of the array minus one.

void draw() {

background(255);

………

xpos[xpos.length-1] = mouseX;

ypos[ypos.length-1] = mouseY;

………

Exercise 9 – The Snake

36 Interaction Design 17/18 8 – Loops and Arrays

 We want to keep only the last 50 mouse locations,

 We store the current mouse location at the end of the array;

basically, we are overwriting what was previously stored there.

 The solution is to shift all of the elements of the array down one
spot before updating the current location.

Element index 49 moves into

spot 48, 48 moves into spot

47, 47 into 46, and so on.

Exercise 9 – The Snake

37 Interaction Design 17/18 8 – Loops and Arrays

 We loop through the array and sett each element index i to the

value of element i plus one.

 Note we must stop at the second to last value since for element 49 there

is no element 50 (49 plus 1).

 In other words, instead of having an exit condition:

 i < xpos.length;

 we must instead say:

 i< xpos.length – 1;

 The full code for performing this array shift is as follows:

for (int i = 0; i < xpos.length-1; i++) {

xpos[i] = xpos[i + 1];

ypos[i] = ypos[i + 1];

}

Exercise 9 – The Snake

38 Interaction Design 17/18 8 – Loops and Arrays

 Finally, we can use the history of mouse locations to draw a series
of circles. For each element of the xpos array and ypos array,

draw an ellipse at the corresponding values stored in the array.

for (int i = 0; i < xpos.length; i++) {

noStroke();

fill(255-i*5);

ellipse(xpos[i],ypos[i],i,i);

}

}

We link the brightness

and the size of the circle

to the location in the array.

The earlier (and therefore older) values

will be bright and small and the later

(newer) values will be darker and bigger.

Exercise 9 – The Snake (complete code)

39 Interaction Design 17/18 8 – Loops and Arrays

int num = 50;

int[] xpos = new int[num];

int[] ypos = new int[num];

void setup() {

size(640,480);

for(int i = 0; i<xpos.length; i++) {

xpos[i] = 0;

ypos[i] = 0;

}

}

void draw() {

background(255);

// Shift array values

for (int i = 0; i < xpos.length-1; i++) {

xpos [i] = xpos[i + 1];

ypos[i] = ypos[i + 1];

}

// New location

xpos[xpos.length-1] = mouseX;

ypos[ypos.length-1] = mouseY;

// Draw everything

for (int i = 0; i < xpos.length; i++) {

noStroke();

fill(255-i*5);

ellipse(xpos[i],ypos[i],i,i);

}

}

